Bounding Picard numbers of surfaces using p-adic cohomology

نویسندگان

  • Timothy G. Abbott
  • Kiran S. Kedlaya
چکیده

Motivated by an application to LDPC (low density parity check) algebraic geometry codes described by Voloch and Zarzar, we describe a computational procedure for establishing an upper bound on the arithmetic or geometric Picard number of a smooth projective surface over a finite field, by computing the Frobenius action on p-adic cohomology to a small degree of p-adic accuracy. We have implemented this procedure in Magma; using this implementation, we exhibit several examples, such as smooth quartics over F2 and F3 with arithmetic Picard number 1, and a smooth quintic over F2 with geometric Picard number 1. We also produce some examples of smooth quartics with geometric Picard number 2, which by a construction of van Luijk also have trivial geometric automorphism group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hodge Numbers from Picard–Fuchs Equations

Given a variation of Hodge structure over P with Hodge numbers (1, 1, . . . , 1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin–Kontsevich–Möller–Zorich, by using the local exponents of the corresponding Picard– Fuchs equation. This allows us to compute the Hodge numbers of Zucker’s Hodge structure on the corresponding parabolic cohomology gro...

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

Exponential Sums on A, Ii

We prove a vanishing theorem for the p-adic cohomology of exponential sums on An. In particular, we obtain new classes of exponential sums on An that have a single nonvanishing p-adic cohomology group. The dimension of this cohomology group equals a sum of Milnor numbers.

متن کامل

EFFECTIVE p-ADIC COHOMOLOGY FOR CYCLIC CUBIC THREEFOLDS

This paper is an updated form of notes from a series of six lectures given at a summer school on p-adic cohomology held in Mainz in the fall of 2008. (They may be viewed as a sequel to the author’s notes from the Arizona Winter School in 2007 [51].) The goal of the notes is to describe how to use p-adic cohomology to make effective, provably correct numerical computations of zeta functions. Mor...

متن کامل

Chow-künneth Decomposition for Universal Families over Picard Modular Surfaces

We discuss conditions for the existence of an absolute ChowKünneth decomposition for complete degenerations of families of Abelian threefolds with complex multiplication over a particular Picard Modular Surface studied by Holzapfel. In addition to the work of Gordon, Hanamura and Murre we use Relatively Complete Models in the sense of Mumford-Faltings-Chai of Picard Modular Surfaces in order to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006